Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Debris-simulated core analysis under fuel procurement constraints in new STACY experiments

Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Yoshikawa, Tomoki; Murakami, Takahiko; Kobayashi, Fuyumi; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10

New experiments simulating fuel debris in the new criticality assembly, STACY, are designed to contribute to the validation of criticality calculations for criticality control of the fuel debris in the Fukushima Daiichi Nuclear Power Plant accident. In the new STACY experiment, a two-region core consisting of a driver region and a test region was investigated in order to configure a debris-simulated core with under-moderation condition (lattice pitch 1.27-cm) having the constraint of available fuel rod number. The test region with a 1.27-cm lattice pitch is surrounded by the driver region, in which fuel rods are arranged in a checkerboard pattern on a 1.27-cm lattice plate, with a 1.80-cm lattice pitch. Neutron spectra and sensitivity were calculated by using MCNP6 and ENDF/B-VII. The core which has a 17$$times$$17 test region with 373 fuel rods is the largest two-region core under the constraint. It was found that the core which has a 17$$times$$17 test region can simulate the neutron spectra of under-moderation condition in a 13$$times$$13 region inside the test region with the root-mean square percentage error of less than 5%. It was also confirmed that the sensitivity of $$^{28}$$Si and $$^{40}$$Ca (n,$$gamma$$) reactions when the concrete simulant, was loaded could be simulated.

Journal Articles

Validation of integrated thermal power measurement using solution fuel STACY experimental data for modified STACY performance test

Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Murakami, Takahiko; Yoshikawa, Tomoki; Hasegawa, Kenta; Tada, Yuta; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 4th Reactor Physics Asia Conference (RPHA2023) (Internet), 4 Pages, 2023/10

To conduct integrated thermal power measurements for the performance test of the modified STACY, we re-analyzed the experimental data measured in the solution fuel STACY using the activation method. We validated its feasibility under the limited number of activation detectors. The re-analyzed results of the activation method by using MVP and PHITS with JENDL-4.0 indicated that the effect of the difference of the position between activation detectors was small enough, and the results agreed with that of the fission product analysis within almost 10%. It is conceivable that the activation method could be adopted instead of the fission product analysis.

Journal Articles

Development of experimental core configurations to clarify k$$_{eff}$$ variations by nonuniform core configurations

Gunji, Satoshi; Araki, Shohei; Suyama, Kenya

Nuclear Science and Engineering, 197(8), p.2017 - 2029, 2023/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The fuel debris generated by the accident at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant is expected to have not only heterogeneous but also nonuniform compositions. Similarly, damaged fuel assemblies remaining in the reactor vessels also have nonuniform configurations due to some missing fuel rods. This non-uniformity may cause changing neutron multiplication factors. The effect of non-uniformity on the neutron multiplication factor is clarified by computations, and the possibility of experimentally validating the computations used for criticality management is being investigated. For this purpose, in this study the criticality effects of several core configurations of a new critical assembly, STACY, of the Japan Atomic Energy Agency with nonuniform arrangements of uranium oxide fuel rods, concrete rods, and stainless-steel rods were studied to confirm benchmarking potential. The difference in these arrangements changed the neutron multiplication factor by more than 1 $. We confirmed that changes in local neutron moderation conditions and the clustering of specific components caused this effect. In addition, the feasibility of benchmark experimental cores with nonuniform arrangements is evaluated. If benchmarking of such experiments could be realized, it would help to validate calculation codes and to develop criticality management methods by machine learning.

Journal Articles

A New critical assembly: STACY

Araki, Shohei; Gunji, Satoshi; Tonoike, Kotaro; Kobayashi, Fuyumi; Izawa, Kazuhiko; Ogawa, Kazuhiko

Proceedings of European Research Reactor Conference 2020 (RRFM 2020) (Internet), 7 Pages, 2020/10

Critical experiments of thermal neutron system are still expected to be playing an important role for wide technical issues. The Japan Atomic Energy Agency (JAEA) is renovating the Static Experimental Critical Facility (STACY) to maintain the experimental capability. The new STACY is designed as a general-purpose criticality facility. Its core mainly consists of low enriched UO$$_{2}$$ fuel rods, grid plates, and light water moderator. The first experiment campaign in the new STACY aims to obtain criticality characteristics of fuel debris, which will be used in validation of criticality analysis methods. The designs of the experimental core configurations are in progress.

Journal Articles

Neutronic design of basic cores of the new STACY

Izawa, Kazuhiko; Ishii, Junichi; Okubo, Takuya; Ogawa, Kazuhiko; Tonoike, Kotaro

Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 9 Pages, 2019/09

Japan Atomic Energy Agency, JAEA, is conducting the renewal program of the heterogeneous water moderated critical assembly STACY (Static Experiment Critical Facility) in order to verify the criticality calculation considering fuel debris which have been produced in the accident of Fukushima Daiichi Nuclear Power Station. The first criticality of the new STACY is scheduled at the beginning of 2021. After the first criticality, it is necessary to perform a series of critical experiments with a series of basic experimental core in order to gain a proficiency of operators and grasp the uncertainty that accompanies the result of critical experiments in STACY. Prior to the construction of the new STACY, a series of neutronic calculation was carried out for licensing and planning first series of critical experiment. In this paper, possible core configuration of the basic experimental core and their limitations are discussed and presented.

Journal Articles

Study of experimental core configuration of the modified STACY for measurement of criticality characteristics of fuel debris

Gunji, Satoshi; Tonoike, Kotaro; Izawa, Kazuhiko; Sono, Hiroki

Progress in Nuclear Energy, 101(Part C), p.321 - 328, 2017/11

 Times Cited Count:3 Percentile:28.82(Nuclear Science & Technology)

Criticality safety of fuel debris, particularly MCCI (Molten-Core-Concrete-Interaction) products, is one of the major safety issues for decommissioning of Fukushima Daiichi Nuclear Power Station. Criticality or subcriticality condition of the fuel debris is still uncertain; its composition, location, neutron moderation, etc. are not yet confirmed. The effectiveness of neutron poison in cooling water is also uncertain for use as a criticality control of fuel debris. A database of computational models is being built by Japan Atomic Energy Agency (JAEA), covering a wide range of possible conditions of such composition, neutron moderation, etc., to facilitate assessing criticality characteristics once fuel debris samples are taken and their conditions are known. The computational models also include uncertainties which are to be clarified by critical experiments. These experiments are planned and will be conducted by JAEA with the modified STACY (STAtic experiment Critical facilitY) and samples to simulate fuel debris compositions. Each of the samples will be cladded by a zircalloy tube whose outer shape is compatible with the fuel rod of STACY and loaded into an array of the fuel rods. This report introduces a study of experimental core configurations to measure the reactivity worth of samples simulating MCCI products. Parameters to be varied in the computation models for the experimental series are:(1) Uranium dioxide with $$^{235}$$U enrichments of 3, 4, and 5 wt.%; (2) Concrete volume fraction in the samples of 0, 20, 40, 60, and 80%; and (3) Porosity of the samples filled from 0 to 80% where the sample void is filled with water. It is concluded that the measurement is feasible in both under- and over-moderated conditions. Additionally, the required amount of samples was estimated.

Journal Articles

Design of water-moderated heterogeneous cores in new STACY facility through JAEA/IRSN collaboration

Izawa, Kazuhiko; Tonoike, Kotaro; Leclaire, N.*; Duhamel, I.*

Proceedings of International Conference on Nuclear Criticality Safety (ICNC 2015) (DVD-ROM), p.965 - 976, 2015/09

In the post-Fukushima prospect, Japan Atomic Energy Agency, JAEA, intends to re-open its Static Experiment Critical Facility STACY, in order to contribute to the validation of fuel debris calculations in conditions close to those affected by the Fukushima Daiichi Nuclear Power Station accident. The reactor core of STACY is being modified by JAEA from homogeneous solution fuel core to heterogeneous pin-type fuel core. The first step of critical experiments is to establish reference experiments involving lattices of UO$$_2$$ rods without fuel debris. A design of such experiments is in progress for the widest range of moderation ratios in the frame of JAEA/IRSN collaboration. For that purpose, perturbation calculation technique and stochastic geometry modeling technique were used with the MCNP5 and the JENDL-4.0 evaluated nuclear data library. The proposed paper will discuss all the aforementioned issues.

Oral presentation

Overview of criticality safety experiments in NUCEF and reassessment of STACY reflecting new regulatory requirements

Miyoshi, Yoshinori

no journal, , 

The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is one of the largest research facilities in JAEA. Multipurpose research and development of advanced technology have been made particularly on the reprocessing technology and trans-uranium waste management. This report introduces the criticality safety experiments with the STACY and TRACY. Since the accident in Fukushima Daiichi Nuclear Power Station in March 2011, it became necessary to reevaluate the safety license of many research facilities such as research reactor, critical facility, fuel treatment facility. In NUCEF, reassessment of the modification program of STACY from fuel solution-type to fuel rod-type is on going. This report mainly presents the principle and technical issues of safety reassessment of the STACY modification based on the new regulatory requirements.

8 (Records 1-8 displayed on this page)
  • 1